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a b s t r a c t

As a maglev transport route has to cross a region with occasional earthquakes, the train/

guideway interaction is an issue of great concern in dominating safety of the maglev

system. This paper intends to present a computational framework of interaction analysis

for a maglev train traveling over a suspension bridge shaken by horizontal earthquakes.

maglev train traveling over it as a series of maglev masses. Due to motion-dependent

nature of magnetic forces in a maglev suspension system, appropriate adjustments of

the magnetic forces between magnets and guide-rail require the air gaps be

continuously monitored. Thus an on-board hybrid LQRþPID controller with constraint

rule base is designed to control the dynamic response of a running maglev mass. Then

the governing equations of motion for the suspended beam associated with all the

controlled maglev masses are transformed into a set of generalized equations by

Galerkin’s method, and solved using an incremental-iterative procedure. Numerical

investigations demonstrate that when a controlled maglev train travels over a

suspended guideway shaken by horizontal earthquakes, the proposed hybrid controller

has the ability to adjust the levitation gaps in a prescribed stable region for safety

reasons and to reduce the vehicle’s acceleration response for ride quality.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetic levitation (Maglev) features the vanguard of technological advance in high speed ground transport for no
physical contact with guideway and efficient energy consumption in reducing greenhouse gas emission. There are two
types of maglev technologies being developed and brought to the stage of commercial (pre-commercial) demonstration:
(1) the electromagnetic suspension (EMS) with attractive mode; (2) the electro-dynamic suspension (EDS) with repulsive
mode [1–4]. The EMS system can lift up a train using attractive forces by the magnets beneath a guide-rail at any speed. The
EDS system uses magnetic repulsive forces to suspend a train in a U-shaped guideway. One feature of an EDS-type maglev
train is that its discrete maglev suspension systems [6] are workable only at high speeds with large guideway clearances of
0.1–0.15 m [2], which is the major difference from the EMS system. Thus the EDS-repulsive system has a larger levitation
gap to accommodate additional vertical motion of the magnet due to ground motion experienced in an earthquake-prone
territory.

In the last decade, a great portion of the studies on maglev dynamics is focused on the vibration of a maglev vehicle
running on a flexible guideway system [5–11]. Cai and Chen [5] provided a literature review for various aspects of the
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dynamic characteristics, magnetic suspension systems, vehicle stability, and suspension control laws of maglev/guideway
coupling systems. Concerning the interaction response of a maglev train traveling over a flexible guideway girder, Cai et al.
[6] pointed out that a concentrated-load vehicle model would result in larger response on the vehicle/guideway system
than a distributed-load one. Zheng et al. [7,8] developed two kinds of vehicle/guideway coupling models with controllable
magnetic suspension systems to observe the phenomena of divergence, flutter, and collision on the dynamic stability of a
maglev vehicle traveling on a flexible guideway. Zhao and Zhai [9] simulated a TR06 carriage as a ten-degree-of-freedom
(10-dof) rigid vehicle model to investigate the ride quality of a maglev vehicle traveling on elevated guideways. In the latest
study, Yau [10,11] proposed an on-board PI controller to control the interaction response of a maglev vehicle running on
flexible guideways by using an incremental-iterative procedure. However, rather limited research works seem available to
conduct the influence of seismic ground motion on interaction behavior of a maglev train crossing a suspended guideway.

A suspension bridge is usually used to cross a deep valley or wide chasm [12] for its lightweight and large span. For
vibration analysis of suspension bridges [13–17], an analytical model based on linearized deflection theory [12,13,18] was
adopted to formulate the governing equations of motion for a single-span suspended beam. From the research results, one
of the key findings revealed that the cable tensions of short or medium span suspension bridges would be amplified
significantly when subjected to moving loads [14].

Concerning the stability problem of a train moving on a bridge shaken by earthquakes, Yang et al.’s book [19] pointed
out that the presence of vertical ground excitations would affect drastically the stability of the train, especially for near
resonant excitations. Xia et al. [20] revealed that seismic traveling wave effect would play an impact role in assessing the
running safety of a train traveling over continuous viaducts during earthquakes. Yau and Fryba [12] indicated that vertical
ground support motion would totally amplify the dynamic response of a single-span bridge subject to multiple moving
loads. Generally speaking, the dynamic interaction behavior of maglev vehicle/bridge system shaken by earthquakes is of a
rather complicated interaction problem involving control of magnetic forces, monitoring of levitation gaps, and multiple
support motions [12,21].

The objective of this study is to present a computational framework of interaction analysis using an incremental-
iterative procedure to compute the dynamic response of a controlled maglev train traveling over a suspended guideway
shaken by horizontal earthquakes. Control of levitation forces between the magnet and guide-rail requires the guideway
clearance be continuously monitored. Thus a hybrid LQRþPID controller is designed to meet the performance criteria of
desired workable air gaps and restricted acceleration amplitudes for a running maglev vehicle. Considering the seismic
wave propagation nature of horizontal ground motion, the coupled equations of motion for maglev vehicle/guideway
system are formulated using a dynamic interaction model of a single-span suspended beam carrying multiple moving
maglev masses. Then the governing equations of motion for the suspended beam associated with all the controlled maglev
masses are transformed into a set of generalized equations by Galerkin’s method [21–23] and solved by the Newmark
method [24] in the time domain. From the numerical results, although the inclusion of horizontal seismic ground motion
may result in a significant amplification on both dynamic responses of the vehicle/guideway interaction system, the
proposed hybrid controller has the ability to achieve the performance criteria of traveling safety and ride quality through
continuous air gap monitoring and sustaining acceleration adjustment.

2. Formulation and mathematical model

Because of the trait of large levitation gaps, an EDS-repulsive system provides a more flexible suspension system in
vertical vibration for a moving maglev vehicle than an EMS-attractive one. For this reason, the use of a secondary
suspension system to mitigate the interaction response between the cabin and levitation frame will be excluded in this
paper. Thus, this study will model a maglev train as a series of maglev masses and focus on the vertical response of the
maglev masses traveling over a single-span suspended guideway (Fig. 1). Based on the deflection theory [12,13,18] that can
take into account the additional cable tension of a suspended beam due to live loads, appreciable simplifications for the
suspended guideway and maglev vehicles are outlined as follows: (1) the suspended guideway girder is modeled as a linear
Fig. 1. Suspended guideway traveled by a maglev train.
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Fig. 2. Schematic diagram of multiple maglev masses running on a suspended beam shaken by horizontal earthquakes.
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elastic Bernoulli–Euler beam with uniform cross section; (2) as shown in Fig. 2, the bridge towers are assumed so rigid that
their deformations are negligible; (3) the suspension cable can carry all the dead loads of the stiffening girder with the aid
of inextensible vertical hangers so that the suspended beam is in an un-stressed state before the action of live loads; (4) the
maglev train passing over the suspended beam is simulated as a sequence of moving maglev masses with regular intervals;
(5) only the horizontal ground motion in longitudinal direction along the guideway is considered; (6) there is no time delay
between the input voltage and output current in the maglev suspension system.

2.1. Governing equations of a single-span suspended beam

For a parabolic cable under a uniform dead load w alone, the cable sag function y(x) and the horizontal component T in
the tensile cable can be respectively, expressed as [25]

yðxÞ ¼ 4y0½x=L� ðx=LÞ2�; (1)

T ¼
�w

y00
¼

wL2

8y0
; (2)

where y0=cable sag at mid-span and L=span length. Based on the deflection theory for small deformations of suspension bridges
[12,13,17,18], the equation of vertical motion for a suspended beam carrying multiple moving maglev masses is given by:

m €u þ c _u þ EIu
0000

� ðT þDTÞðy00 þ u00Þ ¼ wþ pðx; tÞ

pðx; tÞ ¼ �
XK

k¼1

½Gkðik;hkÞ þ fk�jðx; tÞ;

jðx; tÞ ¼ dðx� xkÞ½Hðt � tg � tkÞ � Hðt � tg � tk � L=vÞ�; (3)

where ð�Þ0 ¼ qð�Þ=qx, ð_�Þ ¼ qð�Þ=qt, m=mass of the beam and cable per unit length along x-axis, c=damping coefficient,
fk=additional control force induced by a hybrid controller, Gk=control magnetic force, ik=control current, hk=levitation gap,
u(x,t)=vertical deflection of the beam, EI=flexural rigidity of the beam, T=horizontal component in the initial cable tension (due
to dead loads), DT=additional horizontal component in cable force due to external loads, d( � )=Dirac’s delta function, H(t)=unit
step function, tk=arrival time of the kth maglev mass into the beam, k=1, 2, 3,y, Kth moving maglev mass on the suspended
beam, tg=time lag for the first maglev mass entering the suspended beam, and p(x,t)=loading function of moving maglev
masses. Consider the shaking effect of horizontal seismic support motion acting on the rigid bridge towers shown in Fig. 2, the
time-dependent boundary conditions for the suspended beam with hinged ends are given by:

uxð0; tÞ ¼ dx0ðtÞ;uxðL; tÞ ¼ dxLðtÞ;

uð0; tÞ ¼ 0;uðL; tÞ ¼ 0; EIu00ð0; tÞ ¼ EIu00ðL; tÞ ¼ 0; (4)

where (dx0, dxL) represent the horizontal support movements at the left and right bridge towers, respectively. By including the
horizontal support movements, an additional horizontal component DT in the cable due to external excitation is equal to [25]

DT ¼
EcAc

Lc
uxj

L
0 þ

Z L

0
y0u0 dx

� �
¼

EcAc

Lc
ðdxL � dx0Þ þ

8y0

L2

Z L

0
u dx

� �
;

Lc ¼

Z L

0

ds

dx

� �3

dx ¼

Z L

0
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

q
Þ
3 dx; (5)
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in which Ec=elastic modulus of the cable, Ac=area of the cable, and Lc=the effective length of the cable. Substituting Eqs. (1), (2)
and (5) into Eq. (3) yields the following equation of motion for a suspended beam under the simultaneous action of multiple
moving maglev masses and horizontal support movements

m €u þ c _u þ EIu
0000

� ðT þDTsÞu
00 þ ðaþ ku00Þ

Z L

0
u dx ¼ pðx; tÞ � kðdxL � dx0Þ; (6)

where

DTs ¼
EcAc

Lc
ðdxL � dx0Þ;a ¼

8y0

L2

� �2 EcAc

Lc
;k ¼ 8y0

L2

� �
EcAc

Lc
: (7)

As shown in Eq. (6), the horizontal ground motion may affect the vertical vibration of a suspended beam through multiple
support movements, that is, dx0adxL. Since the increment of horizontal component of cable force in Eq. (5) is dependent
on both the beam deflection u(x,t) and horizontal support movements (dx0, dxL), the integro-differential equation of motion in
Eq. (6) is nonlinear in nature because of the presence of DTs. Besides, an observation of Eq. (6) indicates that the
approximation of aþ ku00 ¼ kð8y0=L2 þ u00ÞCa is acceptable for the deflection theory of small amplitude, i.e.,
ju00j5jy00j ¼ 8y0=L2.

2.2. Equation of a controlled maglev mass

As shown in Fig. 2, a series of maglev masses supported by repulsive-type magnetic forces are crossing a single-span
suspended beam at constant speed. The governing equation of motion for the kth maglev mass is [3]

M €yk ¼ �p0 þ Gkðik;hkÞ þ fk; (8)

where yk=vertical displacement of the kth maglev mass.
From Lenz’s law [33], as a magnet passes over a conductor, current will be induced in the conductor. As a result, a

magnetic force component is created to act on the current-carrying conductor. This is so called the Lorentz force law [34].
Based on this concept, a magnetic force to levitate a vehicle is generated by the changing magnetic field (produced by the
on-board magnets mounted on the vehicle) as well as the induced current (in a conducting guideway) once the running
speed of a repulsive-type EDS maglev vehicle reaches a liftoff speed of about 100–120 km/h. In this study, the induced
levitation force is designed to be linearly proportional to the tuning parameter of (ik/hk)2 if the speed of the maglev vehicle
exceeds the liftoff speed. Such an expression is to reflect the fact that the magnetic force increases as the levitation gap
decreases during maglev vehicle/guideway interactions. Thus the repulsive levitation force to lift up the kth maglev mass
can be represented by

Gkðik;hkÞ ¼ K0 �
ikðtÞ

hkðtÞ

� �2

; (9)

where K0=coupling factor, ik(t)=i0þik(t)=control current, ik(t)=deviation of control current, hkðtÞ ¼ h0 þ ykðtÞ

�uðxk; tÞ þ rðxkÞ=levitation gap, r(x)=irregularity of guideway, xk=position of the kth maglev mass on the guideway, and
(i0, h0)=desired control current and levitation gap around a specified nominal operating point for a maglev mass at static
equilibrium. From the levitation force expressed in Eq. (9), its motion-dependent nature governs the interaction behavior of
the maglev vehicle/guideway coupling system. Besides, one can obtain the suspension force to support the weight of the
maglev mass at the desired control current and levitation gap of (i0, h0) from Eq. (9) as follows:

Gkði0;h0Þ ¼ k0ði0=h0Þ
2
¼ ðMv þmwÞg ¼ Mg ¼ p0; (10)

from which the coupling factor k0 ¼ p0ðh0=i0Þ
2, g ¼ gravity acceleration, and p0=static weight of the lumped maglev mass

M=(Mvþmw).

3. Design of a hybrid LQRþPID controller in conjunction with constraint rules

To keep up the operating performance of essential running safety and good ride quality for a maglev transport
system, a maglev vehicle will be equipped with a proper controller that supplies necessary regulation of control efforts to
the maglev suspension system. In this section, a hybrid controller that combines LQR (linear quadratic regulator)
optimal algorithm for control actuator, PID (proportional, integral, derivative) tuning method for regulating control voltage,
and constraint rule base for achieving the operating performance of a moving maglev vehicle will be carried out in the
following.

3.1. LQR optimal controller

Based on the minimization of a given control performance index, LQR algorithm has been widely used in optimal control
for its simplicity, reliability, robustness, and stability in a closed-loop system [26]. For the purpose of illustration, the
feedback tuning gain to control the dynamic response of the kth maglev mass using LQR optimal algorithm is denoted as gk
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and Eq. (8) is rewritten as

M €yk ¼ �p0 þ Gkðik;hkÞ þ gk; (11)

By introducing the state space as /zkS ¼ /yk _ykS, Eq. (11) can be transformed into a set of first order differential equations
in the following matrix form [26]

f_zkg ¼ ½A�fzkg þ fBggk þ fCgðGk � p0Þ; (12)

½A� ¼
0 1

0 0

� �
; fBg ¼

0

1=M

( )
; fCg ¼

0

1=M

( )
; gk ¼ ½G�fzkg; (13)

where fzkg ¼ /zkS
T and [G] represents the control gain matrix. In this control algorithm, the control gain gk is determined

by minimizing the following quadratic cost index [26]

Jk ¼

Z tf

0
½fzkg

T½Q �fzkg þ Rg2
k �dt: (14)

Here, [Q] is a symmetric positive semi-definite weighting matrix for the performance of a structural system and R the
weighting parameter for the input control force. The physical interpretation of Eq. (14) is that fzkg

T½Q �fzkg=2 can be regarded
as the sum of strain energy and kinetic energy in the system, and Rg2

k as the control energy through the tuning actuator. To
minimize the performance index Jk in Eq. (14), the Riccati equation [26] is usually used to obtain the Riccati matrix [P] and
the control gain matrix [G], i.e.,

½P�½A� � 1
2½P� Bf gR�1 BgT½P� þ ½A�T½P� þ 2½Q � ¼ ½0�;

�
(15)

½G� ¼ �1
2R�1½B�T½P�: (16)

In this study, the weighting matrix [Q] is represented by a diagonal matrix as

½Q � ¼
kb 0

0 M

� �
: (17)

Thus substituting Eqs. (13) and (17) into Eq. (15) gives the following solution of the Riccati matrix [P]:

½P� ¼ 2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kbð1þ

ffiffiffiffiffiffiffiffi
Rkb

p
Þ=M

q ffiffiffiffiffiffiffiffi
kbR

p
ffiffiffiffiffiffiffiffi
kbR

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RMð1þ

ffiffiffiffiffiffiffiffi
kbR

pq
Þ

2
64

3
75; (18)

and the corresponding control levitation force gk at the kth magnets in Eq. (11) is equal to

gk ¼ ½G�fzkg ¼ �r1yk � r2
_yk

r1 ¼

ffiffiffiffiffiffiffiffiffiffi
kb=R

q
;r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

 
2

ffiffiffiffiffiffiffiffiffiffi
kb=R

q
þ

1

R

!vuut : (19)

Finally, introducing the control force gk of Eq. (19) into Eq. (11) gives the optimal control equation of the maglev mass using
LQR control algorithm:

M €yk þ r2
_yk þ r1yk ¼ Gkðik;hkÞ � p0; (20)

Observing the term 1/R in Eq. (19), it indicates that if R approaches to a very large value, i.e., 1=R-0, Eq. (20) is reduced to
the initial equation of motion with less input control gains to the controlled maglev mass. Moreover, the designer may
select a pair of suitable stiffness and damping coefficients to reduce the vehicle’s response to various degrees by trying
different combinations of weighting parameters (kb,R).
3.2. PID tuning regulator

As indicated earlier in Eq. (9), the magnetic levitation force is related to both the control current ik(t) and air gap hk(t).
The voltage equation of control current for the kth maglev system is [3,10,11]

G0
dðik=hkÞ

dt
þ R0ik ¼ Vk; (21)

where G0=2k0=initial inductance of the coil winding the suspension magnet, R0=resistance of the circuit, and Vk=control
voltage. To ensure the sustaining suspension function for the EDS-repulsive system, the PID tuning law [27,28] is applied to
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regulating the control voltage, that is,

Vk ¼ Kd _ek þ Kpek þ Ki

Z t

0
ek dt; (22)

where Kd=derivative gain, Kp=proportional gain, and Ki=integral gain. Concerning the performance of PID parameters (Kp, Ki,
Kd) in process control, a detailed interpretation for the tuning function of proportional, integral, and derivative is
available in Refs. [27,28]. Let us adopt the variable transformation as gk ¼ ik=hk, and the error function as ek ¼

i0=h0 � ik=hk ¼ g0 � gk in the control process. Then substituting Eq. (22) into Eq. (21) and differentiating this equation with
respect to time, after some mathematical manipulation, one can achieve the following differential equation in terms of
control error function

ðG0 þ KdÞ €ek þ ðKp þ R0hkÞ_ek þ ðKi þ R0
_hkÞek � R0g0

_yk ¼ �R0g0ð _u � _rÞjx¼xk
: (23)

With the aid of control error function ek and g0 ¼ i0=h0 defined previously, the combination of Eqs. (20) and (23) yields the
following equations of motion for the kth maglev mass equipped with an on-board hybrid LQRþPID controller

½mv;k�f €uv;kg þ ½cv;k�f _uv;kg þ ½kv;k�fuv;kg ¼ ffv;kg; (24)

of which the displacement vector {uv,k}, force vector {fv,k}, and structural matrices of [kv,k], [cv,k], and [mv,k] are given as
follows:

½mv;k� ¼
M 0

0 Kd þ G0

" #
; ½cv;k� ¼

r2 0

�R0g0 Kp þ R0hk

" #
;

½kv;k� ¼
r1 2p0=g0

0 Ki þ R0
_hk

" #
; ffv;kg ¼

p0 � e2
k=g

2
0

�R0g0ð _u � _rÞjx¼xk

( )
; fuv;kg ¼

yk

ek

( )
: (25)

3.3. Constraint rule base for operating performance

To achieve a better operating performance of maglev transport system, the dynamic response of the moving maglev
vehicle plays a key role in determining the ride quality measured by acceleration response ð €ykÞ and the running safety
detected by working air gap (hk). For this reason, they have to be limited to a workable range. For example, the oscillating
amplitude of magnets should be bounded by a limited range of air gaps ek and the allowable maximum acceleration
amplitude j €ykj of vehicle’s response is also limited to an upper bound of amax. To meet these performance criteria, the
following constraint conditions that force the responses of the moving maglev masses to achieve operating performance
for a working maglev system are required:

j €ykjramax; ek ¼
hmin hkrhmin

hmax hkZhmax
:

(
(26a,b)

Here, (hmin, hmax) are denoted as the lower and upper bounds of working air gap, respectively. According to the responses of
ðhk; €ykÞ measured from a moving maglev mass, a constraint rule base loaded for the performance criteria is summed up as
follows:

Rule 1 : if ðhminohkohmaxÞ and j €ykjramax then 1hk; €ykU; (27a)

Rule 2 : if ðhkZhmax or hkrhminÞ and j €ykjramax then 1hk ¼ ek; €ykU; (27b)

Rule 3 : if ðhminohkohmaxÞ and €ykjZamax then 1hk; €yk ¼ sgnð €ykÞ � amaxU; (27c)

Rule 4 : if ðhkZhmax or hkrhminÞ and j €ykjZamax then 1hk ¼ ek; €yk ¼ sgnð €ykÞ � amaxU: (27d)

Here, 1 � U means an activation function for the constraint conditions included to work, and the sign function of sgnð�Þ is
defined as

sgnð €ykÞ ¼
1 €yk40

�1 €yko0

(
(28)

As shown in the constraint conditions of Eq. (27), the Rule 1 means the normal operating case of a moving maglev mass,
and the Rules 2–4 represent the constraint conditions need to be activated due to excessive vibrations detected from the
maglev mass’s response. In order to impose the constraint rules to the maglev mass system, by Hamilton’s principle and the
concept of Lagrangian multipliers [29], the variational equation of potential energy for the kth moving maglev mass is
given by [29] Z t2

t1

d½Tk � Uk�dt þ

Z t2

t1

dW dt ¼ 0; (29)
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where Tk=kinetic energy of the maglev mass, Uk=potential energy, dW=virtual work done by control force, and

Tk ¼
1
2M _y2

k ; (30)

Uk ¼ lkðtÞ � ðhk � ekÞ þLkðtÞ � ð €yk � €ymax � sgnð €ykÞÞ; (31)

dW ¼ Qkdyk ¼ ðGkðik;hkÞ � p0 þ gkÞ � dyk; (32)

Here, lk and Lk represent the Lagrangian multipliers to restrict the response of ðhk; €ykÞ within the limited range shown in
Eq. (26). By applying the variational principle to Eq. (29) and admitting the arbitrary nature of ðdyk; dlk; dLkÞ, the governing
equations associated with the LQRþPID tuning algorithm as well as the constraint rule base listed in Eq. (27) are outlined as
follows:
(1)
 Rule 1: if ðhminohkohmaxÞ and j €ykjramax then

½mv;k�f €uv;kg þ ½cv;k�f _uv;kg þ ½kv;k�fuv;kg ¼ ffv;kg; (33a)
(2)
 Rule 2: if ðhkZhmax or hkrhminÞ and j €ykjramax then

½mv;k� 0

0 0

� �
f €uv;kg

€lk

( )
þ
½cv;k� 0

0 0

� �
f _uv;kg

_lk

( )
þ
½kv;k� 1

1 0

� �
fuv;kg

lk

( )
¼

ffv;kg

ek � ðh0 � uðxkÞ þ rðxkÞÞ

" #
; (33b)
(3)
 Rule 3: if ðhminohkohmaxÞ and j €ykjZamax then

½mv;k� �1

1 0

� �
f €uv;kg

€Lk

( )
þ
½cv;k� 0

0 0

� �
f _uv;kg

_Lk

( )
þ
½kv;k� 0

0 0

� �
fuv;kg

Lk

( )
¼

ffv;kg

amax � sgnð €ykÞ

" #
; (33c)
(4)
 Rule 4: if ðhkZhmax or hkrhminÞ and j €ykjZamax then

½mv;k� 0 �1

0 0 0

1 0 0

2
64

3
75
f €uv;kg

€lk

€Lk

8><
>:

9>=
>;þ

½cv;k� 0 0

0 0 0

1 0 0

2
64

3
75
f €uv;kg

_lk

_Lk

8><
>:

9>=
>;þ

½kv;k� 1 0

1 0 0

0 0 0

2
64

3
75
fuv;kg

lk

Lk

8><
>:

9>=
>;

¼

ffv;kg

ek � ðh0 þ uðxkÞ þ rðxkÞÞ

amax � sgnð €ykÞ

8><
>:

9>=
>;; (33d)
Rule 1 represents that the responses of both air gap and acceleration of a maglev mass are within a workable range without
constrains, but the case of Rule 4 is that the responses ðhk; €ykÞ must be restricted due to intensive oscillation in the maglev
mass system. With the present control strategy shown in Eqs. (33), an additional control force fk required for regulating the
dynamic response of the kth maglev mass is determined by

fk ¼ �ðgk þ lk �
€LkÞ; (34)

in which the Lagrangian multipliers of ðlk;LkÞ are obtained from the solution of Eqs. (33).
4. Solution by Galerkin’s method

According to the homogeneous boundary conditions shown in Eq. (4), the dynamic deflection of the suspended beam
can be approximated by [21–23]:

uðx; tÞ ¼
X
n¼1

qnðtÞ sin
npx

L
; (35)

where qn(t) means the generalized coordinate associated with the nth assumed mode of the suspended beam. By Galerkin’s
method [12], one can transform the equation of motion for the suspended beam in Eq. (3) into the following generalized
system equations [21–23]. Then, the nth generalized equation of motion of the suspended beam is:

m €qn þ c _qn þ
np
L

� 	2 np
L

� 	2

EI þ ðT þ DTsÞ

� �
qn þPn ¼ pnðtÞ �

2k
np ð1� cosðnpÞÞðdxL � dx0Þ; (36)
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where

Pn ¼
2aL

np2
ð1� cos npÞ

X
k¼1

1

k
ð1� cos kpÞqk

" #
; (37)

pnðtÞ ¼ �
2

L

XK

k¼1

½ðGkðik;hkÞ þ fkÞ � cjnð$n; tÞ�; (38)

cnð$n; tÞ ¼ sin$nðt � tkÞ½Hðt � tg � tkÞ � Hðt � tg � tk � L=vÞ�; (39)

with $n ¼ npv=L [21–23]. It is noted that the generalized loading function pn(t) in Eq. (38) is related to the control
levitation forces obtained from Section 3. For this reason, an iterative method has to be carried out for solving the dynamic
response of the maglev mass/guideway coupling system.

5. Applications of incremental-iterative approach

Because of motion-dependent nature of levitation forces due to the presence of air gaps, the nonlinear interaction
analysis of the maglev vehicle/guideway system needs to be solved by iterative method. The procedure of incremental-
iterative dynamic analysis involves the three phases: predictor, corrector, and equilibrium checking [10,11,32]. Fig. 3 shows
the flow chart to carry out the nonlinear interaction analysis of controlled maglev vehicles running on a suspended
guideway shaken by horizontal ground motion. It is noted that the structure matrices in Eq. (36) as well as the vehicle’s
equation associated with the activation of control process shown in Eqs. (33) should be updated and surveyed at each
iteration.

Due to the presence of levitation gap for a maglev system, the compatible condition of deformation between the magnet
and guideway girder is no longer available in dynamic interaction analysis. For this reason, the convergent condition of
removing unbalanced forces by iterative method is a better way in carrying out the interaction analysis of the maglev mass/
guideway coupling system. Let us define the root mean square of all the sum of unbalanced forces as

btol ¼
X

k¼1...

ðDf i�1
vk;tþDtÞ

2
þ
X

n¼1...

ðDpi�1
n;tþDtÞ

2

" #1=2

; (40)
Fig. 3. Flow chart of incremental-iterative procedure with hybrid control process.
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As btol is larger than a preset tolerance, say 10�3, iteration for removing the unbalanced forces involving the predictor and
corrector should be repeated (see the flow-chart in Fig. 3). Here, Dpi�1

n;tþDt=the unbalanced force between the external force
pi�1

n;tþDt and the effective internal forces f i�1
n;tþDt for the nth generalized system resulting from the last iterative step at time

t þDt, and Df i�1
vk;tþDt=the unbalanced force for the kth maglev mass. Details concerning the incremental-iterative procedure

for dynamic analysis of vehicle/guideway interaction are available in Refs. [10,11,32].

6. Numerical investigations

To take into account the random nature and characteristics of track irregularity in a maglev system, the following power

spectrum density (PSD) function for track class 6 designed by Federal Railroad Administration (USA) [13] is given to simulate
the vertical profile of guide-rail geometry variations

SðoÞ ¼ Avo2
c

ðo2 þo2
r Þðo2 þo2

c Þ

Here, o=spatial frequency, Av, (=1.5�10�7 m), or (=2.06�10�6 rad/m), and oc (=0.825 rad/m) are relevant parameters.
Fig. 4 shows the vertical profile of track irregularity for the simulation of guide-rail geometry variations in this study. In
addition, the time step of 0.005 s is employed to compute the interaction responses of the maglev mass/guideway
coupling system.

As the schematic diagram of Fig. 2, a series of moving maglev masses (4 cars simulated by 8 lumped masses) are
crossing a single-span suspended beam at constant speed v. The properties of the suspended beam and maglev mass unit
are listed in Tables 1 and 2, respectively. In Table 1, the symbol of fi represents the ith modal frequency of the suspended
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Fig. 4. Track irregularity (vertical profile).

Table 1
Properties and natural frequencies of the suspended beam.

L (m) EI (kN m2) EcAc (kN) m (t/m) c (kN s/m/m) y0 (m) EcAc /Le (kN/m) f1 (Hz) ( ) f2 (Hz) ( )

80 2.96�107 1.6�107 5 1.88 8.8 1.82�105 2.42 2.72

Table 2
Properties of moving oscillator and resonant speeds.

d (=d1þd2) (m) d1 (m) d2 (m) Mv (t) mw (t) i0 (A) R0 (O) vres,1 (km/h) vres,2 (km/h)

25 20 5 18 2 25 1.0 218 245
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beam. It is noted that the first natural frequency of anti-symmetric mode is lower than that one of symmetric bending
mode due to the strengthening effect of cable tension [17]. Generally speaking, the acceleration response of vehicle-bridge
system is usually used to evaluate the ride quality and maneuverability of high-speed ground transport system [21–23].
From the numerical results shown in Ref. [17], the use of first 16 modes is considered sufficient to compute the dynamic
response of a suspended beam under the action of multiple moving loads. For this reason, the same number of modes will
be used in all the examples to follow. Moreover, as the passage frequency (=v/d) of train loadings with regular interval (d)
matches any of natural frequencies (fi) of a bridge, the resonant response of the bridge will be developed [30,31], and the
corresponding speed is denoted as vres;i ¼ fid [21–23]. This is so called resonance phenomenon for train-induced response of
railway bridges. In the following numerical examples, the levitation gap (hk) of any of the moving maglev masses should be
always positive for running safety.

6.1. Numerical verification

Prior to investigating the dynamic response of the maglev vehicle/guideway system subject to horizontal ground
motion, a TR06 maglev vehicle model referred to as Ref. [9] is selected to simulate its dynamic behavior running on a
single-span concrete guideway girder with smooth surface. Let us represent the TR06 maglev vehicle as 8 lumped maglev
masses with identical intervals (d1=d2=3 m) moving at constant speed of 400 km/h [9]. The main data for the TR06 maglev
vehicle model and the guideway girder [2,9] are given as follows: EI=24.56�106 kN m2, L=24.854 m, m=3760 kg/m, M=7.6 t,
h0=8 mm, i0=37 ampere (A), and R0=1.1 ohm (O). Considering the PID parameters of (Kp=0.015, Ki=20, Kd=0.027), the time
history responses of mid-span guideway deflection and the acceleration of the first maglev mass, together with the
numerical results referred to as references [9,10], have been plotted in Figs. 5 and 6, respectively. They indicate that the
proposed maglev vehicle/guideway model has the ability to simulate the dynamic behavior of a TR06 maglev vehicle
running on a concrete guideway.

6.2. Determination of PID parameters based on Z–N tuning rules

In designing an LQR controller, one of the important issues is to determine its weighting parameters. Trying different
combinations of weighting parameters (kb,R) would be a suitable approach for designers to select a pair of stiffness and
damping coefficientsðr1;r2Þ in Eq. (20) to control the vehicle’s response. In this example, the low natural frequency and
high damping ratio (say, 2.3 rad/s and 0.87) [35] for the suspended maglev mass would be regarded as target parameters
for the suspended maglev mass. Thus the LQR parameters as (kb=100, R=0.01) are selected in Eqs. (19) and (20). With the
same initial control voltage R0i0 for the maglev suspension system, two desired levitation gaps, i.e., h0=0.15 m/0.1 m, are
respectively, used for the present maglev train model with four vehicles. They are named as MG-1 and MG-2, respectively.
First, an on-board PID controller is employed to regulate the levitation force Gk(ik, hk) in the EDS maglev system. From the
textbooks in Refs [27,28], the Z–N tuning rule has been proved very useful in determining the optimal parameters of a
PID controller for its simplicity, systematic procedure, and robustness in process control, from which the optimal PID
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parameters are given by Kp=0.6Kcr, Ki=1.2Kcr/Tcr, and Kd=KcrTcr/8. Here Kcr means the critical proportional gain of the PID
controller by increasing only the proportional control action (i.e., Ki=Kd=0) Kp from 0 to a critical value Kcr so that the output
first exhibits an oscillation behavior with a critical period Tcr [28].

To determine the optimal PID parameters based on Z–N tuning rules, the tuning parameters of Ki and Kd are first set to
zero. Let us consider the case that the maglev mass systems cross the suspended guideway girder with the higher resonant
speed of 245 km/h. By trials for different Kp to reach the critical parameter Kcr, the corresponding time history responses of
the non-dimensional control error e=g0 and acceleration for the last maglev mass of both MG-1 and MG-2 have been
plotted in Figs. 7 and 8, respectively. They show that the critical periods of the control error function and the transient
responses of MG-1 and MG-2 are almost identical. One explanation for this is that their large levitation gaps allow for
additional vertical motion of a moving EDS-type maglev mass. Table 3 gives the corresponding optimal PID parameters
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Table 3
PID optimal parameters based on the Z–N tuning method.

Type h0 (m) Kcr Tcr (s) Kp (=0.6Kcr) Ki (=1.2Kcr/Tcr) Kd (=KcrTcr/8)

MG-1/MG-2 0.15/0.10 1.2 0.31 0.72 4.65 0.047
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based on the Z–N tuning rules. It is noted that the time history response of acceleration in Fig. 8 for the last maglev mass is
gradually built up due to the resonance phenomenon of the suspended beam mentioned earlier. Such a fact can be
observed from Fig. 9, from which the time history response of midpoint acceleration of the suspended beam traveled by
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MG-1 or MG-2 are identical in that the inertial forces induced by the moving maglev masses are much smaller than their
static weights. This conclusion is consistent with that presented in Refs. [5,10].

6.3. Maximum acceleration response analysis

Let us use the optimal PID parameters listed in Table 3 to tune the control voltage of the maglev suspension system. By
ranging the running speeds from 150–350 km/h with an increment of 5 km/h, the computed maximum acceleration
responses (av,max) of MG-1 and MG-2 against the speed (v) have been drawn in Fig. 10. Such a plot will be called av,max–v

plot in the following examples. The numerical results indicate that the acceleration amplitude reaches its maximum value
at the first resonant speed of 218 km/h but is suppressed at the second resonant speed of 245 km/h. One reason for this is
that as a row of moving masses, with regular intervals of (d1=20 m, d2=5 m) far smaller than the guideway span (L=80 m),
travel over a suspended beam, the simultaneous presence of multiple maglev masses on the guideway may produce a
suppression action on the first symmetric bending mode (i.e., ), making the mid-span acceleration of the
suspended guideway less severe compared with the first resonant case involving the anti-symmetric mode [17]. Such a
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phenomenon can be observed in the following illustration. Consider the maximum acceleration response amplitude
(ab,max) along the suspended beam (x/L) under the action of MG-1 and MG-2 moving with the first two resonant speeds, i.e.,
v1,res and v2,res, respectively. The corresponding ab,max�x/L plots have been drawn in Fig. 11. As can be seen from the
resonant and sub-resonant peaks, the maximum acceleration response along the suspended beam with respect to the first
two resonant speeds of 218 and 245 km/h are governed by the anti-symmetrical and symmetrical modes, respectively. But
the mid-span acceleration amplitude of the beam is significantly suppressed at the second resonant speed of 245 km/h.

6.4. Effect of horizontal ground motion

To investigate the influence of seismic ground motion on interaction response of maglev vehicle/guideway system, the
far-field ground motion recorded at free-field station (TAP003) during the 1999 Chi-Chi Earthquake in Taiwan [19] are used
to simulate the seismic support inputs acting on the suspended guideway. The histogram of ground displacement
containing the EW horizontal component has been plotted in Fig. 12. As can be seen, the intensive zone of horizontal
ground movements appears nearby 25 s. In order to let the rear part of the maglev masses moving on the suspended
guideway has the possibility to experience the action of peak ground motions in the duration between 25 and 28 s, the
critical time of 25 s is employed for the maglev train model to start entering the guideway girder in the following examples.
Besides, suppose the bridge foundations are anchored to bedrock in a rock site with a seismic wave speed of 1000 m/s and
the ground motion at the right bridge support has a time lag of L/1000 (=0.08 s) behind the left one.

Consider the same vehicle/guideway model described in Example 6.3 and use the TAP003-EW seismic inputs shown in
Fig. 12 to shake the suspended beam. The ab,max�x/L plots with respect to the first two resonant speeds have been drawn in
Fig. 11 as well, in which the maximum acceleration amplitudes are totally amplified and slightly greater than 0.5 g (=4.9
m/s2). Obviously, such excessive oscillations in the vibrating suspended beam will be a feedback to the maglev mass system
over it. The corresponding av,max�v plots for MG-1 and MG-2 have been depicted in Fig. 10 as well. As can be seen from the
av,max�v plots denoted by ‘‘with seismic inputs’’, the maximum acceleration amplitudes of the maglev masses are totally
amplified due to seismic wave passage effect. Moreover, the upper/lower bounds of air gaps measured for MG-1 and MG2
to oscillate have been plotted in Figs. 13 and 14, respectively. The results indicate that either MG-1 (with larger air gap) or
MG-2 requires more additional guideway clearance to allow for the excessive oscillations, especially for the case with
seismic inputs. Considering the maximum control force defined as Fmax=(Gk–p0þfk)max required for either MG-1 or MG-2,
the maximum control efforts of Fmax/p0 against the moving speed (v) have been plotted in Fig. 15. As indicated from the
Fmax/p0–v plots denoted by ‘‘w/o constraints’’, larger control efforts are used by the EDS maglev mass units to travel over
the suspended guideway shaken by horizontal ground motion.

From the present study, the av,max�v plots with seismic inputs in Fig. 10 indicate that most of which have exceeded the
upper bound of coded acceleration amplitude of 0.05 g (=0.49 m/s2) [5]. Besides, the vertical working air gap of the magnet
motion in practice for a moving maglev vehicle should be restricted within a desired workable range. Because of this, the
constraint rule base shown in Eqs. (33) will be applied to the hybrid LQRþPID controller in the following example.
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6.5. Applications of the hybrid controller with constraint rule base

For a maglev transport system, the dynamic response of a running maglev train provides important consequences for
running safety and ride quality. The oscillating amplitude of magnet motion offers safety-related information and the
acceleration response of maglev vehicles is concerned with ride quality of passenger cabins. According to the previous
numerical investigations, the amplified levitation gap hk due to the inclusion of earthquakes should be confined, that is,
hminð¼ h0 �DhÞrhkrhmaxð¼ h0 þDhÞ. Here, Dh represents the oscillating amplitude of working air gap of the magnet
motion. As for the upper and lower bounds of maximum vertical acceleration (amax) for the moving maglev masses, they
are restricted to 70.5 m/s2 [5]. For the purpose of illustration, let us consider the same case used in Section 6.4 and
introduce the constraint values of (amax=0.5 m/s2, Dh=0.02 m) to the constraint rule base shown in Eqs. (27). The upper
bound of restricted acceleration (amax) and the limited range of levitation gaps have been depicted in Figs. 10, 13 and 14,
respectively. Based on the control strategy shown in Eqs. (33), the Fmax/p0–v plots of control efforts for MG-1 and MG-2
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have been drawn in Fig. 15, respectively. As can be seen, the use of the proposed hybrid LQRþPID controller including
constraint rule base has achieved the performance criteria required, but larger control gains are required to reach the
predicted goals. Next, let us consider another case that the construction site of the suspended guideway locates at
the region with a lower seismic wave speed of 500 m/s. Under the same constraint rule base described above, the
corresponding Fmax/p0–v plots have been depicted in Fig. 15 as well. As can be seen for the cases with constraints, much
larger control efforts are needed to keep up the performance requirements for the moving maglev vehicles. However, once
the moving speed of the maglev masses exceeds the second resonant speed of 245 km/h, the increase of maximum control
efforts decades rapidly. A possible explanation for this phenomenon is that the faster maglev train would experience less
feedback excitations from the vibrating suspension guideway during earthquakes. Thus less control efforts are required for
the fast maglev vehicles as well.

Meanwhile, let us consider the critical case of the construction site with traveling propagation velocity of 500 m/s.
The control efforts required for the control actuator and the tuning equipment with control voltages have been plotted in
Fig. 16, respectively. As shown in Fig. 16, DFmax=p0ð¼ ðfkÞmax=p0Þ is denoted as the control effort induced by the control
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actuator with constraint rules, and DGmax=p0ð¼ ðGkÞmax=p0 � 1Þ by the regulating equipment with control voltage. The
results show that the control actuator dominates most of the control efforts to satisfy the strict limitations of vertical
response for levitation gap (Dh=70.02 m) and vehicle’s acceleration response ðj €yk;maxjr0:05 gÞ.

7. Concluding remarks

By using an incremental-iterative procedure in conjunction with control process, this paper has presented a
computational framework of interaction analysis for a maglev train traveling over a suspension bridge shaken by horizontal
ground motion. Concerning the running safety and ride quality of a moving maglev vehicle, an on-board hybrid LQRþPID
controller with constraint rules is developed to control the dynamic response of the maglev vehicles. From the present
study, the following conclusions are reached:
1.
 As the passage frequencies (v/d) caused by an EDS maglev train traveling over a suspended guideway girder coincides
with any of the girder frequencies, resonance will be developed on the girder. Such a phenomenon has been observed
from the ab,max�x/L plots, in which higher modes are also excited.
2.
 The proposed hybrid LQRþPID controller provides a constraint rule base to adjust the working air gap within a
prescribed stable region for traveling safety as well as to limit the maximum acceleration of ride quality for passengers.
3.
 Because of the trait of large air gaps, an EDS-type maglev vehicle offers enough guideway clearance to accommodate
additional vertical motion of the magnets induced by earthquakes. Thus the dynamic responses of both the maglev mass
systems, MG-1 (h0=0.15 m) and MG-2 (h0=0.1 m), are quite close.
4.
 The wave propagation effect induced by seismic ground motion plays a key role in affecting the interaction response of
maglev vehicle/guideway system. The present investigation indicates that as a maglev train moves with lower traveling
speeds, its controllers need to spend more control efforts achieving the operating performance desired for a maglev
transport system.
5.
 In order to satisfy the strict performance requirements of vertical response for levitation gap (Dh=70.02 m) as well as
vehicle’s acceleration ðj €yk;maxjr0:05 gÞ, from the present study, the control actuator with constraint rule base would
dominate most of control efforts of the hybrid controller.
6.
 This study represents only parts of a preliminary attempt to simulate the vertical vibration behavior of a maglev train
traveling a suspended bridge shaken by horizontal earthquakes. A further realistic model with 3D maglev vehicle should
be carried out to investigate the influence of lateral seismic propagation on the dynamic stability of maglev train/
guideway interactions.
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